

Center for Translational Molecular Medicine

Translating science into better healthcare

SMAA-CEA: a method for representing decision uncertainty in cost-effectiveness analysis

Douwe Postmus, PhD; Tommi Tervonen, PhD; Hans Hillege, MD, PhD; Erik Buskens, MD, PhD

University Medical Center Groningen, The Netherlands University of Groningen, The Netherlands

Introduction

- In cost-effectiveness analysis (CEA), two or more medical interventions are evaluated in terms of their costs and effects
- Decision uncertainty is represented through the costeffectiveness acceptability curve (CEAC)
- CEACs only provide a partial picture of the uncertainty surrounding the decision problem
 - it shows the probability of making the correct decision when a certain alternative is selected
 - it does NOT provide any information about the alternative's probability distribution over the other ranks when making a wrong decision

SMAA-CEA

- Consider *n* health care interventions that are to be evaluated with respect to their costs (*c*) and effects (*e*)
- It is assumed that the decision maker's preference structure can be represented by the NMB function

 $\text{NMB}(e, c, \lambda) = \lambda e - c$

• The costs and effects of the different alternatives are uncertain and represented by the random vectors $\mathbf{C} = [C_1, \ldots, C_n]^T$ and $\mathbf{E} = [E_1, \ldots, E_n]^T$

Preliminaries cont'd

 For given realizations c of C and e of E, the alternatives are ranked in descending order by means of a ranking function

 $\operatorname{rank}(i, \mathbf{c}, \mathbf{e}, \lambda) = 1 + \sum_{k=1}^{n} I(\operatorname{NMB}(e_k, c_k, \lambda) > \operatorname{NMB}(e_i, c_i, \lambda))$

	cost	effect	NMB (λ=25)
alternative A	100	5	25 => rank 3
alternative B	120	6	30 => rank 2
alternative C	80	7	95 => rank 1

Rank acceptability indices

• Define, based on this ranking function, the sets of favorable cost and effect measurements as

 $M_i^r(\lambda) = \{(c, e) \in \mathbb{R}^n \times \mathbb{R}^n : \operatorname{rank}(i, \mathbf{c}, \mathbf{e}, \lambda) = r\}$

- Any realization (*c*,*e*) in $M_i^r(\lambda)$ results in such values for the different alternatives that alternative *i* obtains rank *r*
- The rank acceptability index b^r_i(λ) describes, for a given value of λ, the share of all possible realizations of C and E for which alternative *i* is ranked at place *r*

$$b_i^r(\lambda) = \iint_{(c,e)\in M_i^r(\lambda)} f_{CE}(\mathbf{c},\mathbf{e}) d\mathbf{c} d\mathbf{e}$$

06 August 2010 5

Rank acceptability indices cont'd

	cost	effect	NMB (λ=25)
alternative A	100	5	25 => rank 3
alternative B	120	6	30 => rank 2
alternative C	80	7	95 => rank 1

	Cost	effect	NMB (λ=25)
alternative A	80	7	95 => rank 1
alternative B	120	6	30 => rank 2
alternative C	100	5	25 => rank 3

 $b_1^{1}(25) = 0.5, \ b_1^{2}(25) = 0, \ b_1^{3}(25) = 0.5$

a ctmm project

06 August 2010 6

Cumulative rank acceptability indices

- Favorable alternatives are those with high probabilities for the best ranks and low probabilities for the worst ranks
- This information can be obtained from the *cumulative rank acceptability indices*

$$t_i^k(\lambda) = \sum_{r=1}^k b_i^r(\lambda)$$

- t^k_i(λ) describes the fraction of all possible realizations of C and E for which alternative *i* is assigned at any of the *k* best ranks
 - $t_i^{1}(\lambda) = b_i^{1}(\lambda)$
 - $t_i^n(\lambda) = 1$

06 August 2010 7

How to use the SMAA-CEA descriptive indices

- Case 1: λ is established a priori of the CEA
 - The general concensus is that a decision maker should select the alternative with the highest expected NMB
 - The rank acceptability indices can be used to provide a complete picture of the uncertainty surrounding the treatment selection decision
- Case 2: the value of λ is not exactly known by the DM
 - The cumulative rank acceptability indices can be used to identify compromise alternatives that have reasonable cost-effectiveness profiles across wide λ ranges

Case study in IVF treatment selection

- We considered a previously published costeffectiveness decision problem relating to infertility treatment (Fiddelers et al., 2009)
- The objective of the original study was to compare the cost-effectiveness of seven IVF strategies
- Effects were quantified in terms of the mean live birth probability for a couple starting IVF treatment
- Costs were analyzed from a societal perspective
- Uncertainty was accounted for by specifying probability distributions for the model parameters

Results of the probabilistic costeffectiveness analysis

Strategy	Mean effect	Mean Cost	ICER	Dominated by
1. 3 x eSET	0.374	14,154		
2. eSET + 2 x STP	0.458	15,157		1-5
3. eSET + STP + DET	0.470	15,609		5
4. eSET + 2 x DET	0.490	16,423		5
5. 3 x STP	0.523	15,498	9,002	
6. STP + 2 x DET	0.552	16,567	38,488	
7. 3 x DET	0.575	11,700	46,560	

a ctmm project

10

Cost-effectiveness acceptability curves

Cumulative rank acceptability curves for ranks 1 and 2

Cumulative rank acceptability curves for ranks 1, 2, and 3

Conclusion

- By describing an intervention's rank distribution, the SMAA-CEA descriptive indices provide a complete picture of the uncertainty surrounding the costeffectiveness decision problem
- We therefore believe that the (cumulative) rank acceptability curves will be a useful extension of the CEAC, which only provides information on the probability that a given intervention is the optimal one

CTMM - A public-private partnership for translational molecular medicine