Efficient weight generation for simulation-based multiple criteria decision analysis

Tommi Tervonen, Gert van Valkenhoef,
Nalan Baştürk, Douwe Postmus

Econometric Institute, Erasmus University Rotterdam, NL
Faculty of Economics and Business, University of Groningen, NL
Department of Epidemiology, University Medical Center Groningen, NL

EWG-MCDA, Tarragona, April 2012
Many MCDA models consist of per-criterion attractiveness measurement followed by their additive aggregation to an overall measurement of performance, value, or utility.

\[
f(f_1(x_1^i), \ldots, f_n(x_n^i)) = \sum_{j=1}^{n} w_j f_j(x_j^i)
\]

\[
g(g_1(x_1^i, x_1^k), \ldots, g_n(x_n^i, x_n^k)) = \sum_{j=1}^{n} w_j g_j(x_j^i, x_j^k)
\]
Simulation-based MCDA

- Weights sum to unity
- In simulation-based MCDA the weights w_j can be imprecise
- Uniform distribution within the feasible weight space W', that is an $(n-1)$-simplex W restricted with the weight constraints
Weight constraints

- Ordinal: poor information, but compatible with all models
- Upper- and lower bounds \((0.4 \leq w_1 \leq 0.6)\): correspond to meaning of weights in outranking methods
- Intervals for weight ratios \((0.6 \leq (w_2/w_4) \leq 0.7)\): correspond to meaning of weights in MAVT/MAUT

- Efficient algorithms exist only for unrestricted, ordinal and lower-bounded weight generation (see Tervonen & Lahdelma, EJOR, 2007)
Markov Chain Monte Carlo with Hit-and-Run

Need:
- Starting point within W'
- Bounding box around the polytope to sample in

Procedure:
- Sample random direction, obtain a line segment
- Sample a point within the segment
- If within W', keep as new point, otherwise keep current point as new point
Problems and our solution

1. $\text{Vol}(W') \approx 0 \Rightarrow p_{\text{hit}}(W') \approx 0$ (transform)

2. MCMC samplers might get “stuck” in some areas, causing slower convergence to uniformity (assess required thinning)
The $(n-1)$-simplex W_n is coincident with the hyperplane $W_n^* = \left\{ w \in \mathbb{R}^n : \sum_{j=1}^{n} w_j = 1 \right\}$

We transform the simplex for sampling in $n-1$ dimensions
The centroid of W_n is at $(1/n, \ldots, 1/n)^T$, so if we translate the plane W_n^* by $(-1/n, \ldots, -1/n)^T$, it forms an $n - 1$ dimensional subspace $V \subset \mathbb{R}^n$.

We obtain an orthonormal basis $\{v^1, \ldots, v^{n-1}\}$ of V by first defining a basis of V and then performing orthogonalization and normalization.

A basis can be defined by choosing $n - 1$ vectors, so that for the k^{th} vector the n^{th} component is -1, the k^{th} component is 1, and the others are 0.

E.g. $\{(1, 0, -1)^T, (0, 1, -1)^T\}$
To map an arbitrary point \(x \in \mathbb{R}^{n-1} \) to the target space \(w \in W_n^* \), apply an affine transformation: a change of basis followed by a translation.

Use homogeneous coordinate representation
\[
x = (x_1, x_2, \ldots, x_{n-1}, 1)^T:
\]

\[
w = TBx
\]

where \(B \) is the \((n + 1) \times n\) augmented change-of-basis matrix and \(T \) the \(n \times (n + 1) \) translation matrix:

\[
B = \begin{pmatrix}
v_1^1 & \ldots & v_1^{n-1} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
v_n^1 & \ldots & v_n^{n-1} & 0 \\
0 & \ldots & 0 & 1
\end{pmatrix} \quad ; \quad T = \begin{pmatrix}
1 & 0 & \ldots & 0 & 1/n \\
0 & 1 & \ldots & 0 & 1/n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1/n
\end{pmatrix}
\]

Both transformations are isometric
Constraints

- Linear constraints defining $W' \subseteq W_n$ need to be defined in $n - 1$ dimensions.
- Constraint set defining W_n is:
 \[Cw \leq b \ ; \ C = -1I_n, \ b = (0, 0, \ldots, 0)^T \]
 \[\sum_{i=1}^{n} w_i = 1 \]
 where I_n is the $n \times n$ identity matrix.
- Since we sample directly from the plane W_n^*, the equality constraint can be dropped.
- The weight constraints can be represented as additional rows in C and b.
- Then the constraints can be expressed in $n - 1$ dimensions as:
 \[Ax \leq b \ ; \ A = CTB \]
 since $Ax = C(TBx) = Cw$.
Due to being in convex polytope, we can define the bounding box exactly as the polytope itself (rejection rate = 0)

A starting point can be found with convex combination of vertex points (obtainable with e.g. Fukuda-Avis pivoting algorithm or LPs)

Details omitted for brevity
Thinning: computational tests

- HAR mixes with $O^*(n^3)$ iterations, $n = 2 \implies$ thinning = 1

 $$f_a(n) = a(n - 1)^3 + (1 - a)$$

- How much thinning is required?

- How to assess sample uniformity?

 - Minimum Spanning Tree (MST) test (Friedman-Rafsky two-sample test)
 - Coefficient of Variation (COV) of the nearest neighbour-distances
 - Standardized Component-wise Error (SCE)
 - Autocorrelation at lag 25 (decided after visual inspection on exploratory tests)
Test setup

- Use ordinal weight information ($w_1 > w_2 \cdots > w_n$)
- Sample $Y = 10k$ weight vectors with HAR
- Sample $X = 10k$ weight vectors with an efficient procedure
- $n \in \{3, \ldots, 25\}$
- $f_a(n), a \in \{0.125, 0.25, 0.5, 0.75, 1.0\}$
- For each test instance, 20 runs
MST metric, HAR, $a = 0.5$ and $a = 0.25$
MST metric, benchmark and HAR with $a = 1.0$
- COV reaches acceptable levels too early (before MST), and depends on dimension \Rightarrow not suitable
- SCE more suitable, but requires enumerating the vertices
Autocorrelation (lag 25) metric, HAR with $f_{1.0}$

- Quite suitable, fast to compute
Results: execution times (s) with thinning $f_{1.0}$
Conclusions

- We provided a transformation technique that enables efficient uniform MCMC sampling within a linearly constrained simplex.
- To assess sample uniformity, we evaluated four convergence metrics, of which MST and autocorrelation at lag 25 are the most suitable ones.
- The technique is sufficiently fast to be applied in interactive decision analysis with problems of modest sizes.
- Sampling code available as the R package 'hitandrun'.
- Future research: MCMC sampling for non-convex preference spaces (teaser: to be presented in EURO).
Obrigado pela sua atenção!

Moltes gràcies per la seva atenció!