SMAA for benefit-risk analysis

Gert van Valkenhoef

Department of Epidemiology, University Medical Center Groningen (NL), Faculty of Economics and Business, University of Groningen (NL)

1st MeHTA study group meeting
9 June 2011, Kuopio, Finland
Outline

1. Introduction
2. SMAA
3. SMAA for BR
4. MTC/SMAA for BR
5. ADDIS Example
6. Discussion
Outline

1. Introduction
2. SMAA
3. SMAA for BR
4. MTC/SMAA for BR
5. ADDIS Example
6. Discussion

Ask questions any time!
Problem

- Current statistical methods insufficient to get integrated overview of the alternatives and criteria:
 - Meta-analysis (evidence pooling) on single criterion
 - Only pair-wise comparisons.
- BR analysis is unstructured
 - No pre-specified criteria or models
- BR analysis is non-transparent
 - Evidence basis not (sufficiently) explicit
 - Measurements and value judgments not separated
Multi-Criteria Decision Analysis (MCDA) methods allow
- to evaluate multiple alternatives
- in terms of multiple criteria

Mixed Treatment Comparison (MTC) models enable
- indirect comparisons
- between ≥ 2 alternative treatments

We put MCDA together with MTC to
- systematically assess the (relative) benefits and risks
- of any number of alternative treatments
- on the relevant criteria
- take into account + quantify uncertainty
- explicitly based on clinical evidence
Other proposed MCDA models don’t take uncertainty into account.

The Lynd & O’Brien model is limited to 2x2 problems.

Stochastic Multi-criteria Acceptability Analysis (SMAA) allows \(m \times n \) problems:

- \(m \) alternatives
- evaluated on \(n \) criteria
- performance of alternative \(i \) on criterion \(j \): \(C_{i,j} \sim f(c_{i,j}) \)
SMAA BR analysis

SMAA models for benefit-risk:

- Can be based on a single trial (published)
- Or (network) meta-analysis (under review)
- And is implemented in ADDIS

Stochastic Multi-criteria Acceptability Analysis (SMAA)

- SMAA is a multi-criteria decision aiding (MCDA) method for ranking
 - a set of m alternatives
 - based on a set of n criteria
- Evaluation of alternative x on criterion y
 - may be uncertain: specify a probability distribution
- Preference information:
 - a weight vector (optional) and
 - a value function (usually linear)
- SMAA is based on Multi-Attribute Value Theory (MAVT)
SMAA: forward / inverse approach

Criteria measurements x → Decision model $M(x, w)$ → Best solution

DMs’ valuations w
SMAA: forward / inverse approach

Criteria measurements x

Decision model $M(x, w)$

Favorable valuations

Prospective solution
Weight space

- Total lack of preference information is represented by a uniform joint probability distribution of the weight space.

- If some preference information is available, the weight space can be restricted with linear constraints.
SMAA decision aiding metrics

Rank acceptability index share of weights and measurements making an alternative have ranks 1, . . . , \(m \) (most preferred, second most, etc.).

Central weight vector center of gravity of the favourable weight space: “Which preferences support an alternative to be the most preferred one?”

Confidence factor probability for an alternative to be preferred when preferences equal its central weight vector: “Are the measurements are sufficiently precise?”
SMAA for Benefit-Risk Assessment

- m alternative treatments are evaluated with respect to efficacy and $n - 1$ most important ADRs
- Based on a single clinical trial
- All measurements (efficacy and ADRs) are absolute risk
 - Assumed beta distribution
 - Fitted to incidences in trial
- Implemented in ADDIS v1.2

Case study: anti-depressants

- Placebo-controlled randomized clinical trial:
 - Fluoxetine
 - Venlafaxine
 - Placebo

- Criteria (selected by expert):
 - Benefit: efficacy (treatment response)
 - Risks: nausea, insomnia, anxiety
Example: measurements

Measurements were Beta distributions for (absolute) risk.

Table: Incidence rates of HAM-D responders and three ADRs, with their Risk Differences (RD) versus Placebo

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Placebo</th>
<th>Fluoxetine</th>
<th>RD (95% CI)</th>
<th>Venlafaxine</th>
<th>RD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>37/101</td>
<td>45/100</td>
<td>0.08 (-0.05, 0.22)</td>
<td>51/96</td>
<td>0.16 (0.03, 0.30)</td>
</tr>
<tr>
<td>Nausea ADRs</td>
<td>8/102</td>
<td>22/102</td>
<td>0.14 (0.04, 0.23)</td>
<td>40/100</td>
<td>0.32 (0.21, 0.43)</td>
</tr>
<tr>
<td>Insomnia ADRs</td>
<td>14/102</td>
<td>15/102</td>
<td>0.01 (-0.09, 0.11)</td>
<td>22/100</td>
<td>0.08 (-0.02, 0.19)</td>
</tr>
<tr>
<td>Anxiety ADRs</td>
<td>1/102</td>
<td>7/102</td>
<td>0.06 (0.01, 0.11)</td>
<td>10/100</td>
<td>0.09 (0.03, 0.15)</td>
</tr>
</tbody>
</table>
Example: value functions

- The criteria value functions were rescaled
 - Approximate 0–1 scale, 1 being best
 - 95% confidence interval hull of measurements
- Limit region on which preferences are assessed
 - Protects assumption of preference linearity
 - Is it needed in this case? Risk is naturally $[0, 1]$ and linear?

Table: Criteria, preference directions, and scaling vectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Preference direction</th>
<th>c'_k</th>
<th>c''_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>↑</td>
<td>0.28</td>
<td>0.63</td>
</tr>
<tr>
<td>Nausea ADRs</td>
<td>↓</td>
<td>0.50</td>
<td>0.04</td>
</tr>
<tr>
<td>Insomnia ADRs</td>
<td>↓</td>
<td>0.31</td>
<td>0.08</td>
</tr>
<tr>
<td>Anxiety ADRs</td>
<td>↓</td>
<td>0.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Example: scenarios

- We considered 3 scenarios:
 1. Health policy decision making with no preferences
 2. Prescription for mild depression
 3. Prescription for severe depression

- Ordinal swing weighting for prescription decisions
Example: preference-free analysis

Figure: Rank acceptability indices
Example: preference-free analysis

Figure: Central weights and confidence factors
Example: severe depression

Figure: Rank acceptability indices
Example: mild depression

Figure: Rank acceptability indices
Case study:
- Despite lack of ‘significant’ results, there are trade-offs
- Still a lot of uncertainty, small sample size
Discussion

- (+) Account for uncertainty in inputs and outputs
- (+) Inverse approach and partial preferences \rightarrow low effort
- (+) Inverse approach: identify scenarios for use
- (+) Separate measurements and preferences \rightarrow transparency
- (-) Based on a single trial
- (-) There may be additional criteria not measured in trials
- (-) Not tested in other therapeutic areas
MTC/SMAA for Benefit-Risk Assessment

- \(m \) alternative treatments are evaluated with respect to efficacy and \(n - 1 \) most important ADRs
- Based on
 - \(n \) network meta-analyses (normal distr. log-odds ratio)
 - \(n \) baseline models (normal distr. log-odds)
- All measurements (efficacy and ADRs) are absolute risk
 - Sampled from the log-odds ratio
 - Conditional on the baseline log-odds
- Implemented in ADDIS v1.6

G. van Valkenhoef, T. Tervonen, J. Zhao, B. de Brock, H.L. Hilleg, D. Postmus, Multi-criteria benefit-risk assessment using network meta-analysis. Submitted manuscript.
MTC/SMAA process

1. Identify or perform systematic review
2. Choose criteria
 - \(k := 1 \)
3. Select criterion \(k \)
4. Run inconsistency model
5. Investigate
 - [inconsistency explained]
6. Run consistent model
7. Estimate baseline
8. [unexplained]
9. \([k < n]\)
10. [All criteria done \((k = n)\)]
11. Construct SMAA model
Why use network meta-analysis?

An earlier model used pair-wise meta-analysis. Problems:

- Choice of common comparator has unknown influence on model
 - Selection bias: arbitrary exclusion of evidence
 - Sensitivity analysis with different comparators?
- Only applicable when common comparator available
 - Not the case in many clinical domains

And we want to offer an automated solution!
Measurement scales

- Meta-analysis results in relative measurements
 - E.g. odds ratio, mean difference
 - Statistically more robust
 - Hard to interpret clinically

- For decision making, we need absolute measurements
 - E.g. risk, change from baseline
 - Choose a baseline treatment and estimate absolute effect
 - Sample effects of other treatments conditional on that

- Problem: how to estimate absolute effect?
 - No general answer, lots of options
Case study: anti-depressants

- Based on existing systematic review
- Alternatives (those with most data):
 - Fluoxetine
 - Paroxetine
 - Sertraline
 - Venlafaxine
 - Placebo
- Criteria (selected by expert):
 - Benefit: efficacy (treatment response)
 - Risks: diarrhea, dizziness, headache, insomnia, nausea
- Same scenarios
Example: network meta-analysis

Figure: Evidence network (25 studies total)
Example: relative measurements

(a) Fluoxetine

(b) Paroxetine

(c) Sertraline

(d) Venlafaxine
Example: baseline measurements

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Log-odds</th>
<th>Risk (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM-D</td>
<td>-0.17 ± 0.11</td>
<td>0.46 (0.40, 0.51)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>-2.19 ± 0.21</td>
<td>0.10 (0.07, 0.14)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>-2.23 ± 0.61</td>
<td>0.10 (0.03, 0.26)</td>
</tr>
<tr>
<td>Headache</td>
<td>-1.20 ± 0.29</td>
<td>0.23 (0.15, 0.35)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>-2.61 ± 0.19</td>
<td>0.07 (0.05, 0.10)</td>
</tr>
<tr>
<td>Nausea</td>
<td>-2.02 ± 0.19</td>
<td>0.11 (0.08, 0.16)</td>
</tr>
</tbody>
</table>
Example: preference-free analysis

Figure: Rank acceptability indices
Example: preference-free analysis

Figure: Central weights and confidence factors
Example: severe depression

Figure: Rank acceptability indices
Example: mild depression

Figure: Rank acceptability indices
Example: discussion

Case study:
- Preference-free analysis gives insight in trade-offs
- Anti-depressents warranted for severe depression
 - But not for mild depression
- Fluoxetine is unlikely to be the best
- There is a lot of residual uncertainty
 - May be due to individual differences in response
 - Choosing between anti-depressants is difficult
- SMAA analysis more informative than just meta-analysis
Discussion

Relative to only using SMAA:

- (+) Take into account all relevant evidence
- (+) Clinically relevant (absolute) scales
- (-) Network meta-analysis labour intensive, difficult
- (-) Scale conversion needs more work
SMAA model based on network meta-analysis.
SMAA example (ADDIS)

Measurements (input distributions).
SMAA example (ADDIS)

Model without preference information.
SMAA example (ADDIS)

Model without preference information.
SMAA example (ADDIS)

Preferences for severe depression.
Severe depression results.
SMAA example (ADDIS)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Scale</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM-D Responders</td>
<td>OR: [0.90 - 1.74] Risk: [0.51 - 0.67] RD: 0.16 NNT 6.35</td>
<td>5</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>OR: [0.32 - 1.00] Risk: [0.03 - 0.10] RD: 0.07 NNH 15.32</td>
<td>4</td>
</tr>
<tr>
<td>Dizziness</td>
<td>OR: [0.90 - 4.69] Risk: [0.06 - 0.26] RD: 0.20 NNH 5.04</td>
<td>1</td>
</tr>
<tr>
<td>Headache</td>
<td>OR: [0.34 - 1.59] Risk: [0.07 - 0.26] RD: 0.19 NNH 5.31</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td>OR: [0.90 - 2.37] Risk: [0.19 - 0.38] RD: 0.19 NNH 5.25</td>
<td>2</td>
</tr>
</tbody>
</table>

Preferences for mild depression.
SMAA example (ADDIS)

Mild depression results.
Relevance: EMA BR methodology project

<table>
<thead>
<tr>
<th>Approach/method</th>
<th>Relevance to regulators</th>
<th>Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic simulation</td>
<td>Can illuminate the risk/benefit trade-off when uncertainty is a major feature of a regulatory decision.</td>
<td>Medium</td>
</tr>
<tr>
<td>Bayesian statistics</td>
<td>Can integrate evidence and its uncertainty, both pre- and post-approval, with multiple criteria in decision models.</td>
<td>High</td>
</tr>
<tr>
<td>MCDA</td>
<td>Multi-criteria decision analysis extends decision theory to accommodate multiple, conflicting objectives. Provides common units of value for both benefits and risks.</td>
<td>High</td>
</tr>
</tbody>
</table>

Table: MTC/SMAA integrates 2 of 2 quantitative approaches rated 'High' on usefulness, and 1 rated 'Medium'.