Decision support for cost-effectiveness analysis of healthcare interventions

Bob Goeree1

1University of Groningen

October 2, 2014
Outline

Context

Problems

Cost-effectiveness analysis

Live Demo

Limitations

Future work
New interventions

- Develop and manufacture medical interventions
- Interventions are (very) expensive
- New interventions have to be approved twice
- Assess potential benefits of a new intervention

- Do the benefits outweigh the side-effects?
- Governments are faced with rising costs concerning health care

- A second decision assess the benefits in relation to the cost of the new intervention
- When both decisions are met with a positive response
- Both decisions are informed by high quality evidence

- Evidence is published as scientific articles

- A decision is informed by a consolidated view of the available evidence, *meta analysis*
- No repository containing structured data exists, evidence needs to be obtained manually.

- An average time per review of 1110 person-hours (Allen and Olkin, 1999).
Problems 2/2

- Analysis are carried out using a series of disconnected tools

- These tools are hard to use, even for experts

- For every new intervention: A new analysis
ADDIS

- Software that captures the entire workflow

Diagram:

Pharmaceutical Companies → Drug Approval Authorities → Drug Reimbursement Approval Authorities → Drug Usage by Patients

Available Evidence → ADDIS

1. Acquisition of evidence
2. Evidence synthesis
3. Support
- Right now ADDIS supports the *approval* decision

- But does not support the *reimbursement* decision

How can ADDIS support decision makers concerned with the reimbursement of medical interventions?
Cost-effectiveness analysis 1/2

- The approval decision is informed by an *efficacy analysis*

- An *efficacy analysis* reports the data as-is

- The *reimbursement* decision is informed by a *cost-effectiveness analysis*

- A cost-effectiveness analysis extrapolates for future effects, through the use of a *disease state model*

- A *disease state model* aims to approximate all effects and costs per patient, and offer a consolidated view of these outcomes
- A patient can reside in a state, e.g. 'Alive' or 'Dead'

- During simulation, a patient can travel to another state, modeled on either a *discrete cycle* of e.g. a year, or the time until a transition is measured, *sojourn time*

- Based on the time a patient spends in a cycle, effects and costs are achieved

- Costs and benefits are discounted for future effects

- Results are reported in a consolidated view
- Let’s explain through a simplified model
- Suppose we need to make the decision to allow the reimbursement of a diabetes intervention
Disease states

No Diabetes

Dead

Diabetes
Transition Probabilities

Suppose we obtained the following transition parameters for the no intervention on a yearly basis:

- Patients who do not suffer from diabetes: 90 people do not develop diabetes, 7 people do develop diabetes and 3 people die
- Patients who do suffer from diabetes: 90 people stay the same, 10 people die

From clinical trials we obtain that the intervention has a positive effect on people that do not have diabetes, a 0.8 hazard ratio is reported.
Utility Weights

Suppose we obtained the following effects with regards to diabetes:

- Patients that do not have diabetes report a 0.84 effect on quality of life on a yearly basis
- Patients that do have diabetes report a 0.65 effect on quality of life on a yearly basis
Suppose we obtained the following Costs with regards to diabetes:

- Diabetes treatment costs EUR 1805 on a yearly basis
- The intervention costs EUR 300 on a yearly basis
- Furthermore, patients that have been selected to receive the intervention have gone through a screening process, which costs EUR 400
- In accordance with zorginstituut (CvZ) guidelines we assume a yearly discount rate of 1.5% for effects and 4% for costs
- At this point the analyst resorts to Excel/R/tool of choice to obtain results
- While obtaining results can be complex, it always follows a general method
- Instead of using those tools: current integration into ADDIS, live demonstration (cea.drugis.org)
Limitations

- Does not address patient heterogeneity
- Only a select set of modeling choices available
- All inputs are just numbers. Ideally inputs are derived, in an automated way, from the available (clinical) evidence
- Mis match between the timescales of the efficacy analysis and the cost-effectiveness analysis
Future work

- Better link with underlying data, its semantics and prerequisite statistical analysis
- Modeling proposition based on obtained parameters
- Integration between both decisions is anticipated (Bergmann et al., 2014)
Thank you for your attention!

Any questions?